芯片元器件
HOME
芯片元器件
正文内容
处理器芯片 芯片=电脑 CPU?打住!它远没有你想象的简单
发布时间 : 2024-11-23
作者 : 小编
访问数量 : 23
扫码分享至微信

芯片=电脑 CPU?打住!它远没有你想象的简单

如果提到芯片,很多人第一反应可能就只有电脑里的 CPU。那么芯片到底是什么?在网络中进行搜索,芯片指的是一种集成电路,在电子学中是一种将电路(主要包括半导体设备,也包括被动组件等)小型化的方式,并时常制造在半导体晶圆表面上。简单来说,芯片就是半导体上单种或多种集成电路形成的产品 ,而集成电路并不像我们中学学到的电线电路,而是一些微型电路。

由集成电路和芯片构成的主板。图库版权图片,不授权转载

“芯片”的“芯”指的是它的重要性。在现代社会中,很多芯片扮演着“大脑”的作用,作为设备的核心,芯片的使用让设备变得“智能”。而“芯片”的“片”则代表它的形态,芯片大部分都是片型,这种高度集成的形态便于将其放入各种设备中。

芯片的应用非常广泛,因此其分类也十分复杂。提及芯片,大部分人可能会单纯将芯片和电脑 CPU 划上等号。然而,芯片所涵盖的范围远不及此,电脑 CPU 只是芯片所发挥的各种功能中的一种。

01

芯片的分类

按照功能分类,芯片可以分为 4 种,分别是:

以电脑的核心 CPU(中央处理器)、GPU(图像处理的芯片)为代表的计算芯片;以内存芯片 ROM(只读存储器)、DRAM(动态随机存储器)为代表的存储芯片;以相机核心 CMOS(互补金属氧化物半导体存储器)为代表的感知芯片;以 AC/DC 电源管理芯片为代表的能源芯片和以 5G 为代表的通信芯片等。

可以这么说,人们日常生活的方方面面都离不开芯片。

图库版权图片,不授权转载

按照不同应用场景分类,芯片还可以分为消费级、工业级、汽车级和军工级芯片。除性能外,它们的主要区别在于工作温度及环境承受能力。

比如,我国嫦娥四号的 CPU 的运算速度只有你手机芯片的几十分之一,可能你会感到奇怪,为什么如此先进的登月技术却用这么“慢”的 CPU 呢?这是因为二者的工作环境存在差异

手机芯片安稳“躺”在主板上,室温稳定,远离水、磁,还有散热片防止它“发烧”,这样的工作环境,完全可以用“舒适”来形容。我们好吃好喝的照顾,它还偶尔会抽风死机。而嫦娥四号的 CPU 所处的太空环境温差达到 300℃,而且时时刻刻都暴露在致命的宇宙辐射下。因此,嫦娥四号的 CPU 需要从材料、系统、结构等各个方面进行特殊设计,从而使其能够与宇宙环境作“对抗”。

因此,对于军工产品或航天设备来说,保证芯片在不同复杂环境条件下的工作稳定性和可靠性才是最重要的考虑因素。

嫦娥四号,图片来源:中华人民共和国中央人民政府官网

如今,芯片的制程工艺 越来越受到到人们的重视。所谓的“几纳米工艺”,以前通常指的是芯片中晶体管的栅极长度,数字越小就代表着单位面积芯片的晶体管集成度越高,其性能也越强。然而,随着芯片的晶体管数量越来越多,人类在 CPU 上的工艺进步逐渐放缓,现在的制程和栅极长度已无法匹配

02

从模拟信号到数字信号

开启自然界的数字化篇章

自然界的事物都是连续的,如连续的时间,连续的水流,“连续”的长度。最初科学家的发明也是“连续的”,例如,有线电话和无线广播都是直接传送和源头一模一样的声音波形,早期的胶片摄影依靠化学材料感光,类似于人眼的频谱映射,从而产生图像。这种“连续”信号我们将其称为“模拟信号 ”。模拟信号完整捕捉或还原了自然,其看似是一个很完美的技术。然而,现实情况果真如此吗?

信号在传输过程中要经过许多环节的处理和转送,在这些过程中,模拟信号会受到干扰 ;同时,如果是有线传输,其线路附近的电气设备也会产生电磁干扰。如果是人类所追求的无线传输,开放环境由于存在更多的不可抗力因素,使得模拟信号几乎无法使用,严重影响通讯质量。为此,人们想了许多办法努力恢复模拟信号,但都无法从根本上解决干扰的问题。

图库版权图片,不授权转载

不过,后来人类发现,如果将连续的模拟信号转化成离散的数字信号 ,问题就会迎刃而解。虽然相较模拟信号而言,离散的数字信号天生就存在误差和分辨率,但由于数字信号在运输过程中具有天生的优势,它可以大大缓解信号的干扰与噪声。因此,困扰人们多年的问题得到了解决。

从发明数字信号这一刻开始,自然界的数字化进程便开始了。想要得到连续的图像?可以!将图片拆解为一块一块像素,再将每个像素的颜色分为红绿蓝不同亮度的组合,图像就可以变成无数二进制数字。想要得到连续的声音?也可以!先将连续信号离散化,然后将每部分用二进制表示,二进制的位数反映了声音波形的精度,最后再进行编码即可变成数字。

模拟信号(上)和数字信号(下)

几乎自然界所有物体都可以被我们在数字世界模拟出来,最终世界“归于”1 和 0 两个数字。所以那句“世界是你们的,也是我们的,但终究是程序员的”很有道理。

03

半导体

芯片“挥洒文采”的“白纸”

正如诗人满腹经纶的文采需要挥洒在白纸上,芯片上的逻辑电路也需要这样一张“白纸”,去展现它的“实力”。而半导体——主要是由高纯度硅制作的硅片,就可以作为“白纸”,让电路设计师在上面肆意挥洒智慧,制作出各种功能的高性能芯片。因此,在芯片中,半导体和集成电路同样重要。但你有没有想过,为什么人们会选择半导体作为“白纸”呢?为什么人们在众多半导体中又选择了“硅”这种元素呢?

图库版权图片,不授权转载

半导体有很多神奇的性质,它区别于容易导电的导体和几乎无法导电的绝缘体。从字面意思而言,可以将半导体理解为一种导电性介于导体和绝缘体之间的物质。然而,半导体远没有这么简单,“半”更体现在“变”,它的导电性可以随条件变化而发生剧烈的转化

首先是掺杂 。纯净的半导体接近绝缘体,几乎无法导电。但如果在半导体中掺杂,它的导电性会急剧增加,如果掺杂过多,甚至会像导体那样非常容易导电。此外,掺杂不同的原子,可以让半导体呈现或正或负的电性,分别称为 P 型半导体N 型半导体 。根据这两种半导体,科学家们制作出了二极管、三极管等设备,这些设备可以用来制作能够加减乘除的运算器、实现与或非的逻辑电路、完成复杂的运算。

其次是电压 。如果将P型和N型半导体碰在一起,它们内部的电子在电场或扩散等的作用下,会在两种半导体间形成一个“耗尽层”。当施加不同方向的电压时,增厚或减薄耗尽层,同样可以实现电路的通或断。而这种电压控制下的通断转化,是迅速的、可逆的、可反复进行的。

如果将电路的通看作“1”,断看作“0”,就会发现芯片的通断居然和数字信号如此融洽。如果自然界可以由0和1组成,那么半导体就是构建世界的画笔。依据半导体神奇的特性,以它为原材制备的芯片可以实现你能想象到的所有功能。无论是在游戏中模拟出无法分辨的真实世界,还是打造极像人类思维的人工智能,芯片最终可以将人类送入数字的时代。

图库版权图片,不授权转载

04

半导体中的“佼佼者”——硅

硅并不是天生的宠儿。最初,人类选择锗作为芯片材料,并且此后整个行业也一直试图找出可以替代硅的其他半导体,砷化镓、氮化镓等半导体也随之应运而生,但它们都无法取代硅在芯片行业中统治般的地位。这是由于硅有如下几个巨大的优势:

1. 首先,硅在自然界中极其丰富 。硅在地壳中的含量达到 28.6%,广泛存在于岩石、砂砾、尘土之中,仅次于氧,甚至硅在宇宙中的储量排在第八位。

2. 掺杂性好。半导体的优势之一就是掺杂性,而硅正是最适合掺杂的材料之一

3. 此外,硅的物理和化学性质相对更稳定 ,做出的芯片不容易损坏。

4. 硅还具有极好的电子迁移率 。迁移率指的是载流子(电子和空穴)在单位电场作用下的平均漂移速度,即载流子在电场作用下运动速度的快慢程度。迁移率是材料的电导率的决定性因素之一,迁移率越大,电阻率越小,通过相同电流时,功耗越小,产生的热量少,因此电流承载能力就越大。除功耗小以外,高迁移率还会影响到器件的工作频率。例如,晶体管的截止频率和载流子迁移率成正比,因此,提高载流子迁移率,就能够提升晶体管的开关速度,从而提升芯片的性能。

5. 此外,硅有着致密氧化物 ——氧化硅。氧化硅不溶于水也不溶于大部分酸,这和印刷电路板技术“一拍即合”,结合的产物就是现在的集成电路平面工艺。

6. 最后,硅容易提纯 。经过数十年的研究,现在我们已经能够生产纯度高达99.999999999%的硅,这几乎是自然界中最纯净的物质。提纯对于芯片制作而言非常重要,随着一枚芯片中所包含的晶体管数量越来越多,芯片结构长度达到纳米级别,在这种情况下,制作如此精密的结构所需要的“白纸”就需要尽可能平整,洁白,即硅片需要具有高纯净度高平整度高清洁度低杂质污染度 的属性,才能完美保持芯片设计的功能。

硅片,图库版权图片,不授权转载

看到这里,或许可能有人想知道,既然硅片的作用如此重要,想必它的制作过程一定很困难。其实,制作硅片的过程并不难,但如何才能制作出这么纯净的硅片呢?请听下回分解。

出品|科普中国

作者|王智豪(中国科学院长春光学精密机械与物理研究所)

监制|中国科普博览

选送单位:中国科学院计算机信息网络中心

本文封面图片及文内图片来自版权图库

图片内容不授权转载

原创图文转载请后台回复“转载”

云巨头大暴走,自研CPU落地200万张!新一轮芯片洗牌开始了

作者 | ZeR0 编辑 | 漠影

上周,全球最大云计算巨头亚马逊云科技自主研发的Graviton4处理器全面上市,最初为全新实例Amazon EC2 R8g提供支持。

这件事还挺让人感慨,有种Arm服务器CPU千帆过尽、苦尽甘来的既视感。

服务器CPU领域曾经上演风水轮流转,早期由一众精简指令集前辈一统天下,后来被复杂指令集架构x86逆袭蚕食。等精简指令集中的后辈Arm想闯数据中心赛道时,x86早已全面霸场。

其实Arm早在2008年就对这个新兴市场跃跃欲试,结果一晃十年过去,几经试水,愣是没激起零星的水花。

第一张进入数据中心市场的门票,还是云计算产业老大哥亚马逊云科技送来的。

当时亚马逊云科技发了个“三连击”:

1、2015年1月,出其不意地收购以色列芯片设计企业Annapurna Labs,引起产业密切关注;

2、2017年,推出首款自研网络芯片Amazon Nitro,把全球第一款商用的DPU芯片送上历史舞台;

3、2018年,发布首款Amazon Graviton处理器,让Arm服务器CPU在数据中心历史中有了清晰的坐标。

随后亚马逊云科技紧锣密鼓开展了教科书般的多线定制芯片攻关,其他中美大厂也相继跟上自研处理器的风潮。漫长的服务器CPU拉锯战,终于从x86单方面碾压,变成Arm阵营声势渐涨。

Graviton亦逐渐坐稳全球最广泛使用的Arm服务器CPU,亚马逊云科技更是被视作带领Arm生态在数据中心开疆辟土的“全村的希望”。伯恩斯坦去年的一份报告显示,亚马逊云科技占据了全球超过一半的Arm服务器CPU市场。

▲亚马逊云科技五年发布五款Graviton处理器(图源:智东西)

今天,大厂自研芯片屡见不鲜,但成功者寥寥可数。亚马逊云科技用五年写出的这本自研服务器CPU参考教材,值得被反复咀嚼。

一、六年死磕CPU自研创新,给Arm服务器芯片开路

一代开山路,二代奠江湖。

这是亚马逊云科技自研服务器芯片发家的真实写照:2018年11月发布的Graviton处理器,发出了云计算大厂自研CPU的第一声枪响;一年后,继任者Graviton2出场,标志着Arm服务器CPU正式进入数据中心市场竞争中,与x86掰手腕。

Graviton2集成了300亿颗晶体管,核心数量足足是上一代的4倍,并翻倍提升了L1/L2缓存,总线带宽达到2TB/s,相比上一代实现了7倍的性能提升。与基于x86的同类实例相比,基于Graviton2的实例性能提高了40%,每个实例成本降低了20%。

在低功耗上的出色表现,使亚马逊云科技大举将通用工作负载转移到Graviton2上,以节省电力和成本。此后,Graviton系列的采用率飙升,覆盖的工作负载从起初的Cache和Web扩展到数据分析、机器学习、高性能计算等。

Graviton在市场的初步告捷,堪称改变Arm命运的节点。

这背后,亚马逊云科技在底层创新上颇费心思:首次不再使用同步多线程技术,而是实现物理核心单线程资源独享,让每个vCPU独占1个物理核心,使vCPU之间更加隔离,不会因争抢资源而导致性能抖动。

从第一代到第二代,Graviton通过增加核数取得了可观的性能提升,但到第三代,亚马逊云科技需要纳入更多的设计创新。

增加核数、提升主频,是提升性能的两个常见手段。2021年发布的第三代Graviton3没有采用这些思路,核心数不变,主频仅略微提升。因为提高频率对于大规模数据中心来说会比较冒险,可能会带来大量的能耗,而且需要搭配升级的电源及散热配置,最终导致客户的使用成本上升。

Graviton3做了几项有别于前代的创新:

1、采用Chiplet设计,将7块硅die封装在一起;

2、采用指令级并行方法,提高了单个核心周期可执行的指令数量,使核心能完成更多任务;

3、针对内存带宽和延时敏感型工作负载,增加了40%的内存空间,并采用DDR5将内存通道带宽提升50%。

结果,相比上一代,Graviton3能将应用负载的性能无差别提升25%,功耗相比x86实例降低多达60%。通过内置机器学习硬件加速单元,这颗处理器还实现了3倍的机器学习性能提升,并被AI研究人员和企业用于云中的MLOps。

2022年推出的Graviton3E,专门针对浮点和向量指令运算进行了优化,向量计算性能达到Graviton3的2倍,尤其适用于人工智能/机器学习、高性能计算等应用场景。

最新一代Graviton4用上了更好的Neoverse-V2核心,并将核心数增加到96核,每个核心的L2缓存提升1倍至2MB,内存带宽提升75%。

每一代Graviton都会较上一代有两位数的性能提升,并且单位算力功耗不断下降。而节能减排对于数据中心的可持续发展极其重要,Twitter、Databricks、F1方程式赛车、Snap等知名云客户都使用了基于Graviton的服务,并对其降本增效的优势赞誉有加。

据外媒报道,到2022年年中,Graviton约占亚马逊云科技CPU实例的20%,其中大部分是Graviton2,亚马逊云科技新增虚机实例中约50%都是Graviton系列。

一些云客户公开背书称,他们通过租用Graviton服务节省了10%~40%的计算成本。

作为Graviton早期用户的大宇无限,用Graviton2将大数据作业的成本降低了20%;大量使用Graviton2实例的涂鸦也升级到新一代实例,将IoT平台加解密性能提高50%。

根据市场调研机构IDC的数据,2023年第一季度Arm服务器出货量市占率约为10%。此时Arm在服务器市场的生态问题已经初步得到解决。

截至目前,亚马逊云科技在全球六大洲33个地区和100多个可用区累计部署了超过200万张Graviton处理器。这些处理器驱动了超过150种计算实例,被全球超过5万的企业和开发者所使用。

二、唯一实现大规模使用Arm架构的云大厂

在服务云客户的过程中,亚马逊云科技团队发现如果希望针对所有可能的工作负载彻底变革计算的性价比,需要彻底重新思考实例,深入底层技术,包括定制芯片。

为什么是基于Arm架构设计芯片?

对于亚马逊云科技来说,这既是形势所迫,又是前瞻布局。

首先,Arm的许可证相对易得,而且设计自由度高,便于亚马逊云科技设计出更符合云业务需求的处理器。

其次,省电长期是数据中心的老大难。考虑到规模效应,每个芯片节省的几瓦特都很重要。而Arm已经被移动处理器市场检验过高能效、高算力密度、低成本等优势。

另外前文我们提到过,Graviton在提升频率上很谨慎,通过更高的指令级并行来补足性能,使其在性价比上更有竞争力。在高CPU利用率下,Graviton中每个vCPU独占一个物理核心,不存在争用问题,能保持依然快的速度,其价格优势则会变得明显。

据亚马逊云科技披露,相比采用Graviton3的第七代R7g实例,基于新一代Graviton4处理器的Amazon EC2 R8g实例性能提高了30%,实例大小更大,vCPU和内存增加多出3倍,能为数据库、内存缓存和实时大数据分析等内存密集型工作负载提供更好的性价比。

与R7g实例相比,R8g实例可将Web应用程序最高提速30%,数据库最高提速40%、大型Java应用程序最高提速45%。

其性能和性价比优势已经得到一些实测验证。

根据Phoronix发布的一些基准测试结果,在相同vCPU数量时,新Graviton4核心大致与英特尔Sapphire Rapids性能相当,同时能媲美AMD第四代EPYC,在运行高性能计算、加密、代码编译、光线追踪、数据库、3D建模等工作负载时,代际进步整体非常出色。

▲经测试,基于Graviton4的R8g实例性价比超过基于英特尔至强、AMD EPYC的亚马逊云科技云实例(图源:Phoronix.com)

作为R8g实例首发客户之一,Honeycomb分享称Graviton4的吞吐量改进非常明显,相比四年前刚开始使用Graviton,每vCPU吞吐量提高了一倍多。他们准备在R8g实例系列正式发布后立即把整个工作负载迁移到Graviton4上。

爆款游戏《堡垒之夜》的制作公司Epic Games评价说,基于最新Graviton4的EC2 R8g实例是基于他们测试过的最快的EC2实例,在其“最具竞争力和对延迟敏的工作负载中表现出色”,可以充分提高游戏服务器的性能。

对SAP HANA Cloud使用R8g实例的初步测试结果显示,与基于Graviton3的实例相比,R8g实例的分析性能可提升高达25%,事务性工作负载性能可提升高达40%。

▲R8g实例不同规格对比

迄今为止,只有亚马逊云科技真正实现了大规模使用Arm架构。

为什么是亚马逊云科技?正如亚马逊云科技大中华区解决方案架构总经理代闻在今年中国峰会上所言:“只有在云计算的环境下,才有机会做这样的从应用到CPU的全栈创新。”

自研芯片不是纸上创新,需要工程经验的积累,不仅要追求高性能,而且要足够的稳定可靠和高度安全。

用相同Arm微架构不代表就能做出一样性能的CPU,设计出芯片也不代表就能取得量产和商业上的成功。光是几百个CPU核心互连带来的线性度和通信延时问题,就能难倒不少芯片团队,更别提设计Arm服务器芯片还要突破生态难关。

亚马逊云科技的研发思路是从对云客户工作负载的深刻理解,逆向穿透到芯片设计。这种以客户为中心的方法能让亚马逊云科技短期内进行调整,以快速适应市场动态。

以Graviton4为例,亚马逊云科技首次面向实际应用设计CPU架构,该处理器的设计工程中从传统的MicroBenchmark基准测试评价体系转向以实际工作负载进行评价的方法。比如,优化Cassandra数据库、Groovy应用、nginx服务器,所需要的前端和后端CPU参数是不一样的。

庞大的客户规模为亚马逊云科技高筑壁垒。其遍布全球的广泛数据中心集群,能承载Graviton系列处理器的落地。全球最大云计算业务所形成的规模效应,又能为亚马逊云科技有效摊薄成本。

持续创新的云服务,使亚马逊云科技能够了解到使用最多的应用及其资源消耗模式,以此来挑选对用户来说收益最高的技术点,进行针对性优化,快速改进软件和硬件堆栈甚至是CPU设计,研发出相匹配的vCPU和硬件核心。

同时,亚马逊的各条托管服务的产品线都使用统一的基础设施,因此Graviton创新可以及时应用到所有的托管服务里。用户通过更换计算选项,就能轻松享受到Graviton带来的性价比提升。

用户只需关心哪款实例更能满足需求,亚马逊云科技负责将软件的迁移和学习成本打下来。通过将更多的管理服务和Graviton做深度集成,从x86无缝迁移到Arm变得简单快捷。

三、自研芯片如何影响云计算?

今天,自研芯片已经成科技大厂的标准动作,不管是降本增效、构建竞争优势,还是提高可控性、降低第三方芯片企业依赖,都是容易说服下游客户和投资者的好故事。

但在九年前,当亚马逊云科技率先踏出自研芯片之路时,这还是个超前的探索。

回溯云计算发展史,亚马逊云科技在2006年发布首款EC2(弹性云计算)实例定义被视作一个历史时刻。随后越来越多的企业逐渐接受云计算概念,并开始将自家应用迁移到云端。

现在亚马逊云科技可以在云上顺利运行几万个节点的高性能计算集群来训练大模型,能在云上处理高并发的实时流媒体应用,这些在当时都是很难想象的。要知道亚马逊云科技的第一款EC2实例,主频只有1.7GHz,网络带宽250Mbps,内存不到2GB,磁盘是只有160GB的机械盘。

在云计算业务刚起步的几年,亚马逊云科技要解决很多棘手问题,特别令团队焦虑的是:如果使用定制版Xen作为虚拟化管理程序,无论如何耗费大量时间来优化代码,虚拟层始终会占用主机资源,并且x86 CPU并不擅长处理网络流量。

直到2013年,一家以色列芯片企业Annapurna Labs走进亚马逊云科技的视线。经过合作,亚马逊云科技首次将网络处理写到硬件。惊喜的落地表现,让亚马逊云科技盯上了这家出色的合作伙伴:2015年1月,亚马逊云科技宣布收购Annapurna Labs,自此踏上自研芯片的旅程。

回过头来看,这绝对是亚马逊云科技历史上一笔精明的投资。

就在这一交易的两年后,亚马逊云科技对外宣布Nitro虚拟化平台,将安全、管理、监控全部卸载到硬件上,将主机算力近乎100%地提供给客户。

从此,云计算走上了业务与基础设施完全物理隔离的路子,底层的虚拟化技术创新和上层的服务器种类发展可以并行展开。

这催生了EC2实例的关键拐点:从2006年到2017年,亚马逊云科技用11年从1种EC2实例做到70种;而从2017年到2023年,EC2实例骤然爆发式增长,6年从70种发展到750种,能为各类负载提供合适的计算实例。

站在Nitro成功的基石上,亚马逊云科技发展出网络芯片、服务器CPU、AI训练和推理芯片三条产品线:Nitro网络芯片已经发展到第五代,持续优化网络性能、存储性能和安全加固;Graviton已经发布四代五款;AI推理芯片Inferentia和AI训练芯片Trainium,通过提供更具性价比的推理和训练实例,让用户有了GPU之外的AI加速选择。

这使得亚马逊云科技能够保持内部全栈创新的灵活性:从定制的板卡及服务器开始,到深入底层定制芯片,再到横向扩展自研芯片版图,亚马逊云科技逐渐将从芯片、硬件到软件整合协同,在为业务带来更好成本效益和可靠性的同时,构成独属于自己的核心竞争力。

自研芯片与亚马逊云科技自研的存储服务器和高速网络系统联动,使得更多芯片能够高效互连,从而真正明显缩短计算的时间。站在这些创新基础上,亚马逊云科技能够支持云计算中运行最具挑战性的任务之一——人工智能与机器学习。

在近期举行的亚马逊云科技纽约峰会上,亚马逊云科技宣布96%的AI/ML独角兽已将其业务跑在亚马逊云科技上,2024福布斯AI 50榜单中90%的企业选用亚马逊云科技。从2023年至今,亚马逊云科技已经正式发布了326项生成式AI功能,同期机器学习和生成式AI服务的正式可用数量超过了其他供应商的两倍。

广泛的用例与深厚的技术积累总是唇齿相依。这些数量惊人的AI用例,使得亚马逊有足够的实践案例来为客户提供能取得最佳收益的选择,而广泛的客户反馈又能成为其芯片设计最好的动能。芯片技术的持续迭代,将托举起越来越高性价比的云服务,推动生成式AI普惠。

结语:没有哪款芯片,是云计算的唯一解

市场上有大量的芯片选择,云基础设施提供商能在如何将所有这些整合在一起方面发挥价值,从而更好实现从基础设施到云服务的各种创新。

与独立芯片企业不同的是,亚马逊云科技自研芯片的目的不在于参与市场竞争,而在于为其客户提供一个“万能商店”,既提供自研芯片,又提供英特尔CPU、英伟达GPU等市面主流选择,由客户来根据这些芯片实例的配置文件,自行选择最能满足工作负载需求的产品组合。

Graviton的六年演进,走通了Arm服务器CPU落地的故事。Arm为亚马逊云科技提供了灵活定制CPU的基础,亚马逊云科技则推动了服务器芯片市场格局的变阵,成为Arm在数据中心市场展现成本和性价比优势的最好代言。

只要Graviton还有降本增效的空间,亚马逊云科技就可以继续降价让利,把规模与技术的红利回馈给云客户。

相关问答

芯片和cpu有什么区别?

1芯片和CPU具有不同的功能和作用,有一定的区别。2芯片是集成电路板,它包含多个电子元件和晶体管,可以用于控制电子设备。而CPU是位于电脑主板上的处理器,...

OPPO用的是什么芯片呢?好吗?-ZOL问答

OPPO用的高通和联发科芯片,即使是同一个厂家的芯片也是分中高端的,不能一概而论。比如骁龙旗舰系列为8字开头头,分别是820、821、835、845、865,低端机型为4开...

全球芯片排行榜前十名?

1、Intel英特尔:美国一家主要以研制CPU处理器的公司,是全球最大的个人计算机零件和CPU制造商,它成立于1968年,具有46年产品创新和市场领导的历史。2、Qu...8...

手机芯片处理器排行榜?

2021年手机芯片处理器排名:苹果A14Bionic肯定名列榜首。高通骁龙888其次、然后就是华为麒麟9000、苹果A13、三星xynos1080、高通骁龙865Plus、高通骁龙865...

5g芯片与处理器芯片的区别?

主要区别如下:1.功能不同。5G芯片主要用于实现5G通信功能,负责5G信号的接收、解调和发送;处理器芯片主要用于计算和信息处理,执行操作系统和软件程序。2...

主控芯片和cpu的区别?

二者的区别是芯片集成了上外围器件,CPU不带外围器件(例如存储器阵列),是高度集成的通用结构的处理器,CPU是一种数字芯片,只是众多芯片中的一类。芯片和cpu...

cpu与芯片哪个技术含量高?

cpu与手机芯片相比,手机芯片的技术含量更高。手机芯片目前主流是5纳米,甚至3纳米芯片也在计划生产。而cpu目前主流是14纳米的。比如英特尔宣布其7纳米CPU至少...

为什么显卡要比CPU贵很多?零件的问题吗?说说显卡贵在什么地...

1、CPU,比如像主流的I3处理器,晶体管数量大约是3.82亿个,而同样是主流的GTS450...3、CPU是一颗芯片,周边电路的成本都在主板上。而显卡成本不仅是GPU的成本,还...

cpu芯片成分?

CPU由运算逻辑部件、寄存器部件和控制部件组成中央处理器主要包括运算器(算术逻辑运算单元,ALU,ArithmeticLogicUnit)和高速缓冲存储器(Cache)及实现它...

求解cpu内置显示芯片是什么意思?_其他问答_系统粉

意思是说主板提供了显示输出接口,但是主板并没有集成显卡,需要配合集成了核心显卡的cpu才可以使用显示接口输出。如果配置中的cpu不是集成核心显卡...

 橡胶测试  雅艾芬迪 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部