云巨头大暴走,自研CPU落地200万张!新一轮芯片洗牌开始了
作者 | ZeR0 编辑 | 漠影上周,全球最大云计算巨头亚马逊云科技自主研发的Graviton4处理器全面上市,最初为全新实例Amazon EC2 R8g提供支持。
这件事还挺让人感慨,有种Arm服务器CPU千帆过尽、苦尽甘来的既视感。
服务器CPU领域曾经上演风水轮流转,早期由一众精简指令集前辈一统天下,后来被复杂指令集架构x86逆袭蚕食。等精简指令集中的后辈Arm想闯数据中心赛道时,x86早已全面霸场。
其实Arm早在2008年就对这个新兴市场跃跃欲试,结果一晃十年过去,几经试水,愣是没激起零星的水花。
第一张进入数据中心市场的门票,还是云计算产业老大哥亚马逊云科技送来的。
当时亚马逊云科技发了个“三连击”:
1、2015年1月,出其不意地收购以色列芯片设计企业Annapurna Labs,引起产业密切关注;
2、2017年,推出首款自研网络芯片Amazon Nitro,把全球第一款商用的DPU芯片送上历史舞台;
3、2018年,发布首款Amazon Graviton处理器,让Arm服务器CPU在数据中心历史中有了清晰的坐标。
随后亚马逊云科技紧锣密鼓开展了教科书般的多线定制芯片攻关,其他中美大厂也相继跟上自研处理器的风潮。漫长的服务器CPU拉锯战,终于从x86单方面碾压,变成Arm阵营声势渐涨。
Graviton亦逐渐坐稳全球最广泛使用的Arm服务器CPU,亚马逊云科技更是被视作带领Arm生态在数据中心开疆辟土的“全村的希望”。伯恩斯坦去年的一份报告显示,亚马逊云科技占据了全球超过一半的Arm服务器CPU市场。
▲亚马逊云科技五年发布五款Graviton处理器(图源:智东西)
今天,大厂自研芯片屡见不鲜,但成功者寥寥可数。亚马逊云科技用五年写出的这本自研服务器CPU参考教材,值得被反复咀嚼。
一、六年死磕CPU自研创新,给Arm服务器芯片开路
一代开山路,二代奠江湖。
这是亚马逊云科技自研服务器芯片发家的真实写照:2018年11月发布的Graviton处理器,发出了云计算大厂自研CPU的第一声枪响;一年后,继任者Graviton2出场,标志着Arm服务器CPU正式进入数据中心市场竞争中,与x86掰手腕。
Graviton2集成了300亿颗晶体管,核心数量足足是上一代的4倍,并翻倍提升了L1/L2缓存,总线带宽达到2TB/s,相比上一代实现了7倍的性能提升。与基于x86的同类实例相比,基于Graviton2的实例性能提高了40%,每个实例成本降低了20%。
在低功耗上的出色表现,使亚马逊云科技大举将通用工作负载转移到Graviton2上,以节省电力和成本。此后,Graviton系列的采用率飙升,覆盖的工作负载从起初的Cache和Web扩展到数据分析、机器学习、高性能计算等。
Graviton在市场的初步告捷,堪称改变Arm命运的节点。
这背后,亚马逊云科技在底层创新上颇费心思:首次不再使用同步多线程技术,而是实现物理核心单线程资源独享,让每个vCPU独占1个物理核心,使vCPU之间更加隔离,不会因争抢资源而导致性能抖动。
从第一代到第二代,Graviton通过增加核数取得了可观的性能提升,但到第三代,亚马逊云科技需要纳入更多的设计创新。
增加核数、提升主频,是提升性能的两个常见手段。2021年发布的第三代Graviton3没有采用这些思路,核心数不变,主频仅略微提升。因为提高频率对于大规模数据中心来说会比较冒险,可能会带来大量的能耗,而且需要搭配升级的电源及散热配置,最终导致客户的使用成本上升。
Graviton3做了几项有别于前代的创新:
1、采用Chiplet设计,将7块硅die封装在一起;
2、采用指令级并行方法,提高了单个核心周期可执行的指令数量,使核心能完成更多任务;
3、针对内存带宽和延时敏感型工作负载,增加了40%的内存空间,并采用DDR5将内存通道带宽提升50%。
结果,相比上一代,Graviton3能将应用负载的性能无差别提升25%,功耗相比x86实例降低多达60%。通过内置机器学习硬件加速单元,这颗处理器还实现了3倍的机器学习性能提升,并被AI研究人员和企业用于云中的MLOps。
2022年推出的Graviton3E,专门针对浮点和向量指令运算进行了优化,向量计算性能达到Graviton3的2倍,尤其适用于人工智能/机器学习、高性能计算等应用场景。
最新一代Graviton4用上了更好的Neoverse-V2核心,并将核心数增加到96核,每个核心的L2缓存提升1倍至2MB,内存带宽提升75%。
每一代Graviton都会较上一代有两位数的性能提升,并且单位算力功耗不断下降。而节能减排对于数据中心的可持续发展极其重要,Twitter、Databricks、F1方程式赛车、Snap等知名云客户都使用了基于Graviton的服务,并对其降本增效的优势赞誉有加。
据外媒报道,到2022年年中,Graviton约占亚马逊云科技CPU实例的20%,其中大部分是Graviton2,亚马逊云科技新增虚机实例中约50%都是Graviton系列。
一些云客户公开背书称,他们通过租用Graviton服务节省了10%~40%的计算成本。
作为Graviton早期用户的大宇无限,用Graviton2将大数据作业的成本降低了20%;大量使用Graviton2实例的涂鸦也升级到新一代实例,将IoT平台加解密性能提高50%。
根据市场调研机构IDC的数据,2023年第一季度Arm服务器出货量市占率约为10%。此时Arm在服务器市场的生态问题已经初步得到解决。
截至目前,亚马逊云科技在全球六大洲33个地区和100多个可用区累计部署了超过200万张Graviton处理器。这些处理器驱动了超过150种计算实例,被全球超过5万的企业和开发者所使用。
二、唯一实现大规模使用Arm架构的云大厂
在服务云客户的过程中,亚马逊云科技团队发现如果希望针对所有可能的工作负载彻底变革计算的性价比,需要彻底重新思考实例,深入底层技术,包括定制芯片。
为什么是基于Arm架构设计芯片?
对于亚马逊云科技来说,这既是形势所迫,又是前瞻布局。
首先,Arm的许可证相对易得,而且设计自由度高,便于亚马逊云科技设计出更符合云业务需求的处理器。
其次,省电长期是数据中心的老大难。考虑到规模效应,每个芯片节省的几瓦特都很重要。而Arm已经被移动处理器市场检验过高能效、高算力密度、低成本等优势。
另外前文我们提到过,Graviton在提升频率上很谨慎,通过更高的指令级并行来补足性能,使其在性价比上更有竞争力。在高CPU利用率下,Graviton中每个vCPU独占一个物理核心,不存在争用问题,能保持依然快的速度,其价格优势则会变得明显。
据亚马逊云科技披露,相比采用Graviton3的第七代R7g实例,基于新一代Graviton4处理器的Amazon EC2 R8g实例性能提高了30%,实例大小更大,vCPU和内存增加多出3倍,能为数据库、内存缓存和实时大数据分析等内存密集型工作负载提供更好的性价比。
与R7g实例相比,R8g实例可将Web应用程序最高提速30%,数据库最高提速40%、大型Java应用程序最高提速45%。
其性能和性价比优势已经得到一些实测验证。
根据Phoronix发布的一些基准测试结果,在相同vCPU数量时,新Graviton4核心大致与英特尔Sapphire Rapids性能相当,同时能媲美AMD第四代EPYC,在运行高性能计算、加密、代码编译、光线追踪、数据库、3D建模等工作负载时,代际进步整体非常出色。
▲经测试,基于Graviton4的R8g实例性价比超过基于英特尔至强、AMD EPYC的亚马逊云科技云实例(图源:Phoronix.com)
作为R8g实例首发客户之一,Honeycomb分享称Graviton4的吞吐量改进非常明显,相比四年前刚开始使用Graviton,每vCPU吞吐量提高了一倍多。他们准备在R8g实例系列正式发布后立即把整个工作负载迁移到Graviton4上。
爆款游戏《堡垒之夜》的制作公司Epic Games评价说,基于最新Graviton4的EC2 R8g实例是基于他们测试过的最快的EC2实例,在其“最具竞争力和对延迟敏的工作负载中表现出色”,可以充分提高游戏服务器的性能。
对SAP HANA Cloud使用R8g实例的初步测试结果显示,与基于Graviton3的实例相比,R8g实例的分析性能可提升高达25%,事务性工作负载性能可提升高达40%。
▲R8g实例不同规格对比
迄今为止,只有亚马逊云科技真正实现了大规模使用Arm架构。
为什么是亚马逊云科技?正如亚马逊云科技大中华区解决方案架构总经理代闻在今年中国峰会上所言:“只有在云计算的环境下,才有机会做这样的从应用到CPU的全栈创新。”
自研芯片不是纸上创新,需要工程经验的积累,不仅要追求高性能,而且要足够的稳定可靠和高度安全。
用相同Arm微架构不代表就能做出一样性能的CPU,设计出芯片也不代表就能取得量产和商业上的成功。光是几百个CPU核心互连带来的线性度和通信延时问题,就能难倒不少芯片团队,更别提设计Arm服务器芯片还要突破生态难关。
亚马逊云科技的研发思路是从对云客户工作负载的深刻理解,逆向穿透到芯片设计。这种以客户为中心的方法能让亚马逊云科技短期内进行调整,以快速适应市场动态。
以Graviton4为例,亚马逊云科技首次面向实际应用设计CPU架构,该处理器的设计工程中从传统的MicroBenchmark基准测试评价体系转向以实际工作负载进行评价的方法。比如,优化Cassandra数据库、Groovy应用、nginx服务器,所需要的前端和后端CPU参数是不一样的。
庞大的客户规模为亚马逊云科技高筑壁垒。其遍布全球的广泛数据中心集群,能承载Graviton系列处理器的落地。全球最大云计算业务所形成的规模效应,又能为亚马逊云科技有效摊薄成本。
持续创新的云服务,使亚马逊云科技能够了解到使用最多的应用及其资源消耗模式,以此来挑选对用户来说收益最高的技术点,进行针对性优化,快速改进软件和硬件堆栈甚至是CPU设计,研发出相匹配的vCPU和硬件核心。
同时,亚马逊的各条托管服务的产品线都使用统一的基础设施,因此Graviton创新可以及时应用到所有的托管服务里。用户通过更换计算选项,就能轻松享受到Graviton带来的性价比提升。
用户只需关心哪款实例更能满足需求,亚马逊云科技负责将软件的迁移和学习成本打下来。通过将更多的管理服务和Graviton做深度集成,从x86无缝迁移到Arm变得简单快捷。
三、自研芯片如何影响云计算?
今天,自研芯片已经成科技大厂的标准动作,不管是降本增效、构建竞争优势,还是提高可控性、降低第三方芯片企业依赖,都是容易说服下游客户和投资者的好故事。
但在九年前,当亚马逊云科技率先踏出自研芯片之路时,这还是个超前的探索。
回溯云计算发展史,亚马逊云科技在2006年发布首款EC2(弹性云计算)实例定义被视作一个历史时刻。随后越来越多的企业逐渐接受云计算概念,并开始将自家应用迁移到云端。
现在亚马逊云科技可以在云上顺利运行几万个节点的高性能计算集群来训练大模型,能在云上处理高并发的实时流媒体应用,这些在当时都是很难想象的。要知道亚马逊云科技的第一款EC2实例,主频只有1.7GHz,网络带宽250Mbps,内存不到2GB,磁盘是只有160GB的机械盘。
在云计算业务刚起步的几年,亚马逊云科技要解决很多棘手问题,特别令团队焦虑的是:如果使用定制版Xen作为虚拟化管理程序,无论如何耗费大量时间来优化代码,虚拟层始终会占用主机资源,并且x86 CPU并不擅长处理网络流量。
直到2013年,一家以色列芯片企业Annapurna Labs走进亚马逊云科技的视线。经过合作,亚马逊云科技首次将网络处理写到硬件。惊喜的落地表现,让亚马逊云科技盯上了这家出色的合作伙伴:2015年1月,亚马逊云科技宣布收购Annapurna Labs,自此踏上自研芯片的旅程。
回过头来看,这绝对是亚马逊云科技历史上一笔精明的投资。
就在这一交易的两年后,亚马逊云科技对外宣布Nitro虚拟化平台,将安全、管理、监控全部卸载到硬件上,将主机算力近乎100%地提供给客户。
从此,云计算走上了业务与基础设施完全物理隔离的路子,底层的虚拟化技术创新和上层的服务器种类发展可以并行展开。
这催生了EC2实例的关键拐点:从2006年到2017年,亚马逊云科技用11年从1种EC2实例做到70种;而从2017年到2023年,EC2实例骤然爆发式增长,6年从70种发展到750种,能为各类负载提供合适的计算实例。
站在Nitro成功的基石上,亚马逊云科技发展出网络芯片、服务器CPU、AI训练和推理芯片三条产品线:Nitro网络芯片已经发展到第五代,持续优化网络性能、存储性能和安全加固;Graviton已经发布四代五款;AI推理芯片Inferentia和AI训练芯片Trainium,通过提供更具性价比的推理和训练实例,让用户有了GPU之外的AI加速选择。
这使得亚马逊云科技能够保持内部全栈创新的灵活性:从定制的板卡及服务器开始,到深入底层定制芯片,再到横向扩展自研芯片版图,亚马逊云科技逐渐将从芯片、硬件到软件整合协同,在为业务带来更好成本效益和可靠性的同时,构成独属于自己的核心竞争力。
自研芯片与亚马逊云科技自研的存储服务器和高速网络系统联动,使得更多芯片能够高效互连,从而真正明显缩短计算的时间。站在这些创新基础上,亚马逊云科技能够支持云计算中运行最具挑战性的任务之一——人工智能与机器学习。
在近期举行的亚马逊云科技纽约峰会上,亚马逊云科技宣布96%的AI/ML独角兽已将其业务跑在亚马逊云科技上,2024福布斯AI 50榜单中90%的企业选用亚马逊云科技。从2023年至今,亚马逊云科技已经正式发布了326项生成式AI功能,同期机器学习和生成式AI服务的正式可用数量超过了其他供应商的两倍。
广泛的用例与深厚的技术积累总是唇齿相依。这些数量惊人的AI用例,使得亚马逊有足够的实践案例来为客户提供能取得最佳收益的选择,而广泛的客户反馈又能成为其芯片设计最好的动能。芯片技术的持续迭代,将托举起越来越高性价比的云服务,推动生成式AI普惠。
结语:没有哪款芯片,是云计算的唯一解
市场上有大量的芯片选择,云基础设施提供商能在如何将所有这些整合在一起方面发挥价值,从而更好实现从基础设施到云服务的各种创新。
与独立芯片企业不同的是,亚马逊云科技自研芯片的目的不在于参与市场竞争,而在于为其客户提供一个“万能商店”,既提供自研芯片,又提供英特尔CPU、英伟达GPU等市面主流选择,由客户来根据这些芯片实例的配置文件,自行选择最能满足工作负载需求的产品组合。
Graviton的六年演进,走通了Arm服务器CPU落地的故事。Arm为亚马逊云科技提供了灵活定制CPU的基础,亚马逊云科技则推动了服务器芯片市场格局的变阵,成为Arm在数据中心市场展现成本和性价比优势的最好代言。
只要Graviton还有降本增效的空间,亚马逊云科技就可以继续降价让利,把规模与技术的红利回馈给云客户。
处理器芯片(CPU):智能手机中的核心动力
在智能手机的内部,有一颗强大的“心脏”——处理器芯片(CPU),它不仅是智能手机运行的基础,更是其性能、功耗和智能体验的关键所在。今天,我们就来深入剖析CPU在智能手机中的作用,以及其核心架构、核心数、主频等关键指标。
CPU:智能手机的“大脑”
智能手机处理器,也被称为中央处理器(CPU),是手机的“大脑”。它负责接收并执行来自手机操作系统、应用程序等各个部分的指令,完成各种复杂的运算和控制任务。从简单的点击操作到复杂的图像处理、游戏运行,都离不开处理器的支持。可以说,处理器的性能直接决定了手机的整体性能。
架构:决定性能与功耗的基础
CPU的架构,是处理器设计和组织结构的总称,它决定了CPU的性能、功耗和兼容性。当前,智能手机领域常见的CPU架构包括x86、ARM和RISC-V等。
x86架构:最初由英特尔(Intel)开发,拥有丰富的指令集和功能,可以执行复杂的操作。尽管x86架构在个人电脑和服务器领域占据主导地位,但在智能手机领域,由于其功耗相对较高,应用并不广泛。
ARM架构:由英国公司ARM(Advanced RISC Machines)开发,采用精简指令集(RISC)设计,具有低功耗、高效率的特点。ARM架构被广泛应用于智能手机、平板电脑等移动设备中,成为这些设备的主流选择。
RISC-V架构:是一种开放的指令集架构(ISA),由加州大学伯克利分校的研究团队发起。RISC-V架构遵循精简指令集计算机(RISC)的设计原则,具有完全开源、可扩展的特点。随着技术的发展,RISC-V架构在智能手机等嵌入式系统中的应用前景广阔。
核心数:多任务处理的利器
核心数是CPU系列中的一个重要术语,它表示处理器内部执行任务的单元数量。早期的智能手机大多采用单核处理器,随着技术的发展,双核、四核、八核甚至更多核心的处理器逐渐普及。
多核心处理器的出现,使得智能手机在处理多任务时更加游刃有余。例如,在同时运行多个应用程序、进行复杂游戏或高清视频播放时,多核心处理器能够提供更好的性能和流畅度。此外,多核心处理器还能够有效降低处理器的发热量,延长手机的续航时间。
主频:速度与效率的双重体现
主频是CPU的时钟频率,表示CPU每秒钟执行的时钟周期数。主频越高,CPU的运算速度越快。然而,主频并非决定CPU性能的唯一因素,还与CPU的流水线、缓存、指令集等多方面因素有关。
在智能手机领域,主频的提升对于提高运算速度至关重要。然而,随着主频的不断提升,处理器的发热量和功耗也会相应增加。因此,在追求高性能的同时,如何平衡功耗和发热量成为了智能手机处理器设计的重要课题。
总结:CPU—智能手机的核心动力
综上所述,处理器芯片(CPU)作为智能手机的核心部件之一,承担着运算、控制、图形处理、智能和连接等多重任务。其架构、核心数和主频等关键指标共同决定了手机的性能、功耗和智能体验。随着技术的不断发展和创新,未来的智能手机处理器将会更加强大、智能和高效。对于消费者而言,在选购智能手机时,关注处理器的性能参数将成为一个重要的参考因素。
相关问答
主板里提到cpu类型和显示芯片:CPU内置显示芯片(需要CPU支持)...
3条回答:【推荐答案】CPU内置显示芯片的意思就是CPU本身集成显卡的功能,这应该是AMD的A系列CPU了,内存类型的意思说通俗点就是内存的代数DDR3内存就是现在电脑主...
CPU上的各个数字和型号代表什么意思-ZOL问答
例如一块Barton核心的AthlonXP2500+处理器,芯片上编号为“AXDA2500DKV4D”,表示的信息是什么?咱们得把编号拆成几个部分来看才能辨识其意义,分别是:“AXDA”...
芯片和cpu有什么区别?
1芯片和CPU具有不同的功能和作用,有一定的区别。2芯片是集成电路板,它包含多个电子元件和晶体管,可以用于控制电子设备。而CPU是位于电脑主板上的处理器,...
cpu芯片分类?
cpu分类1、在基本的芯片设计上,目前主要的两家桌面CPU产品都是差不多的,根据价格和定位,CPU会在核心的数目、运行频率内存控制器等方面存在差异,并造成...cp...
芯片处理器区别?
处理器即cpu,其芯片和处理器的区别如下:1、功能上的区别。cpu的功能是顺序控制、操作控制、时间控制、数据加工,解释计算机指令以及处理计算机软件中的数据。...
芯片、处理器、soc、CPU、GPU、NPU有什么区别?
芯片、处理器、SOC、CPU、GPU、NPU有什么区别吗?《许多数码类文章中都会提及芯片、处理器、SOC、CPU、NPU等概念,那么这几个概念分别是什么意思?之间又有什么关...
处理器与芯片关系?
1.芯片是最大的统称,只要是包含了各种半导体元件的集成电路都是芯片。而处理器是芯片的一种,指可以执行程序的逻辑机器。电脑里用的CPU其实名字是中央处理器,...
处理器和芯片一样吗?
不一样1、芯片:是指将电子逻辑门电路用激光刻录到硅片上,从而构成各种各样的芯片,当今集成度最高、功能最强大的应该CPU芯片了。2、CPU:是指所有时期,各种...
CPU、GPU、NPU、TPU、SOC,哪种芯片的技术门槛最高?
先回答问题:SoC复杂度最高、技术门槛也最高,是集成各种功能部件的大一统芯片。但隔行如隔山,各种芯片也都各具专业性,不可或缺、不可替代。芯片相关几个概念...
cpu与芯片哪个技术含量高?
cpu与手机芯片相比,手机芯片的技术含量更高。手机芯片目前主流是5纳米,甚至3纳米芯片也在计划生产。而cpu目前主流是14纳米的。比如英特尔宣布其7纳米CPU至少...