OpenAI与博通洽谈合作!ASIC芯片走向台前,英伟达GPU迎来劲敌?
电子发烧友网报道(文/李弯弯)为了减轻对英伟达的依赖,OpenAI一直在推进自研芯片计划。7月19日消息,由公司CEO山姆·奥特曼(Sam Altman)牵头,OpenAI正与包括博通在内的半导体设计公司就开发新芯片进行洽谈,以减轻对英伟达的依赖并加强供应链。
此外,据称OpenAI还聘请了曾参与谷歌张量处理单元(TPU)开发和生产的谷歌前员工,以帮助其进行AI芯片的设计工作。而博通此前也曾与谷歌合作开发过TPU。
OpenAI探索自主研制AI芯片的可能性
OpenAI高度依赖英伟达的GPU来满足其大型语言模型的算力需求。自OpenAI成立以来,英伟达一直是其重要的合作伙伴。英伟达提供的GPU为OpenAI的模型训练提供了强大的算力支持。例如,在OpenAI的早期发展阶段,英伟达CEO黄仁勋亲自将首个轻量化小型超算DGX-1送给OpenAI,极大地提升了其计算效率。
OpenAI开发的ChatGPT、GPT-4、DALL-E3等人工智能模型,目前都依赖英伟达昂贵的GPU。消息称,OpenAI已经投入大量资金购买英伟达的芯片,以满足其AI研究和应用的算力需求。据报道,OpenAI曾决定投入216亿美元购买72万片英伟达H100芯片。
然而,随着生成式AI技术的迅猛发展,算力需求急剧增加,对GPU等硬件的依赖也越来越大。为了降低对外部供应商的依赖,并优化成本结构,OpenAI开始探索自主制造AI芯片的可能性。
据称,奥特曼去年就决定创办一家新公司,开发和生产新的人工智能(AI)芯片,并帮助建立生产这些芯片的工厂以及采用这些芯片的数据中心。今年1月,有消息称,奥特曼曾与软银集团和总部位于阿布扎比的G42进行了融资谈判,为一家新的芯片制造企业筹集数十亿美元资金。今年2月,传闻的数十亿美元升级为数万亿美元。
除此之外,为了加强AI芯片的研发实力,OpenAI还在积极招募前谷歌员工。这些员工拥有丰富的Tensor处理器开发经验和技术,将有助于OpenAI开发出具有竞争力的AI服务器芯片。业界普遍预计,OpenAI的第一代自研芯片将在未来几年内推出。这些芯片有望大幅降低OpenAI的算力成本,并提高其在大规模数据处理和深度学习任务中的竞争力。
除了自研芯片外,OpenAI还可能与其他半导体设计公司进行合作,以开发新的AI芯片产品。例如,有报道称OpenAI正与博通等半导体设计公司就开发新芯片进行洽谈。这些合作将有助于OpenAI拓宽其供应链渠道,并降低对单一供应商的依赖风险。
博通定制化ASIC芯片低调实现业绩增长
相比于英伟达,博通在AI芯片领域显得尤为低调。然而,值得关注的是,在过去一年,半导体行业下行周期中,除了英伟达以GPU霸主身份实现业绩快速成长之外,博通也因为AI的蓬勃发展,实现业绩稳健增长。
据Gartner统计,2023年按照半导体销售额计算,英伟达以56.4%的收入同比增速,首次进入Gartner统计的半导体Top5阵营,而前十公司中在下行周期能实现成长的另外两家公司,一家是博通,一家是意法半导体。
博通CEO兼主席HockTan(陈福阳)表示,第一财季和2024整个财年有两大收入增长动力。其一是公司前不久完成收购Vmware,随着客户部署Vmware的基础设施,促成博通软件基础设施部分收入增长;其二是人工智能数据中心对网络产品的强劲需求,以及人工智能定制加速器在超大规模数据中心方面的需求推动半导体部分领域增长。
博通是通信芯片行业的全球龙头,在交换路由芯片、Wi-Fi芯片等多个领域具有领先地位。其AI芯片领域的业务主要体现在定制化ASIC芯片以及相关的数据交换芯片上。博通定制化ASIC芯片广泛应用于数据中心、云计算、高性能计算(HPC)、5G无线基础设施等领域。
博通可以说是AI领域ASIC定制化芯片的重要参与力量。谷歌自研的TPU AI加速芯片,博通是核心参与力量,不仅与谷歌团队共同参与研发,还提供了关键的芯片间互联通信知识产权,并负责了制造、测试和封装等步骤。
微软与Meta等科技巨头也选择与博通合作,共同设计研发AI芯片。例如,Meta的第一代和第二代AI训练加速处理器就是与博通共同设计的,预计博通还将在2024年下半年和2025年加快研发Meta下一代AI芯片MTIA 3。
博通定制化ASIC芯片的特点主要体现在:其一、高性能,博通的ASIC芯片集成了先进的硅技术和高性能的设计方法,能够提供卓越的计算和数据处理能力。这些芯片在吞吐量、算力水平等方面具有显著优势,能够满足数据中心和云计算等场景下的高性能需求。
其二,低功耗,定制化ASIC芯片在功耗方面进行了优化,相比通用芯片具有更低的功耗表现。这对于降低数据中心和云计算等场景下的运营成本具有重要意义。
其三,高可靠性,博通的ASIC芯片在设计和制造过程中采用了严格的质量控制标准,确保了芯片的高可靠性和稳定性。这对于保障数据中心和云计算等关键基础设施的可靠运行至关重要。
其四,灵活性,博通提供定制化的ASIC芯片解决方案,能够根据客户的具体需求进行灵活设计和调整。这种灵活性使得博通能够满足不同行业和场景下的多样化需求。
虽然相比于GPU来说,定制化ASIC在通用性上较差,然而其优势也非常明显,就如谷歌的TPU,就是ASIC定制化AI芯片的一种,它转为深度学习设计,计算效率很高。目前,在大模型训练过度依赖英伟达GPU的环境下,不少科技公司在尝试新的路径来满足特定场景的算力需求,如谷歌、微软以及OpenAI等与博通合作研制专门的定制化ASIC芯片。
写在最后
目前,OpenAI的AI模型主要依赖于英伟达的GPU。通过自主制造AI芯片,OpenAI可以减少对英伟达的依赖,降低采购成本,并增强自身的技术自主可控能力。通过与博通合作,OpenAI能够更快成功研制AI芯片,而且性能可以得到保证,就如谷歌TPU一样。OpenAI与博通的的合作无疑也会进一步将博通推向台前,推动AI芯片市场竞争格局发生变化。
ASIC芯片的发展趋势和未来前景如何?
ASIC(特定应用集成电路)芯片在未来发展中展现出显著的潜力和趋势。以下是ASIC芯片的发展趋势和未来前景的概述:
1. **AI芯片核心**:ASIC芯片被认为是未来AI芯片的核心,特别是在AI训练和推理任务中。谷歌、英特尔、英伟达等科技巨头相继发布了TPU、DPU等ASIC芯片,国内公司如寒武纪、比特大陆、地平线、阿里巴巴等也推出了深度神经网络加速的ASIC芯片。ASIC在吞吐量、功耗、算力水平等方面都有优势,TPU比同时期的GPU或CPU平均提速15-30倍,能效比提升30-80倍。
2. **市场需求增长**:随着人工智能、物联网、数据中心、汽车电子等应用的兴起,ASIC芯片的市场需求不断攀升。KBV Research的报告显示,2019-2025年,全球ASIC芯片市场规模预计将达到247亿美元,年复合增长率预计将达8.2%。
3. **定制化趋势**:ASIC芯片的定制化设计将成为未来的主流趋势。安谋中国AI技术高级市场经理吴彤指出,ASIC定制化芯片将成为未来的主流,特别是在端侧推理市场的增速最快。
4. **能效优势**:ASIC芯片在能效比和算力水平方面具有显著优势。相比GPU和FPGA,ASIC芯片的功耗更低,效率更高。例如,ASIC设备可以使用更少的电力,并且由于其较小的物理尺寸,芯片效率更高。
5. **应用领域广泛**:ASIC芯片的应用领域非常广泛,包括医疗、工业、军事、航空等。特别是在虚拟币挖矿领域,ASIC芯片因其高能效而受到青睐。
6. **技术替代趋势**:随着机器学习和边缘计算的发展,ASIC芯片逐渐受到重视,可能会替代部分GPU的应用。天风证券的研报指出,随着GPU的功耗过高等弊端的显现,类GPU架构的定制化大算力AI芯片(ASIC)或将存在市场,未来GPU与ASIC两者可能将产生替代竞争。
7. **国内厂商的机遇**:目前全球ASIC市场并未形成明显的头部厂商,国内厂商如ICG(聪链集团)、澜起科技等正在快速发展。中泰证券的研报分析认为,国内厂商完全有弯道超车的机会,突破国外厂商在AI芯片的垄断格局。
8. **端侧AI芯片增速快**:AI芯片市场在端侧的增速非常高,尤其是在未来的5-10年内。安谋中国自研的“周易”AIPU拥有完全自主可控、完整生态等特点,目前已经推出两代产品,分别为“周易”Z1和“周易”Z2,面向边缘计算中高性能场景。
综上所述,ASIC芯片在未来的发展中具有广阔的前景,特别是在AI和边缘计算等领域,其定制化、高能效和广泛应用的特性使其成为关键技术之一。
相关问答
soc芯片和ASIC芯片的区别?
1、SOC是系统级芯片,ASIC是特殊应用集成电路。SoC也有称片上系统,ASIC即专用集成电路,意指它是一个产品,是一个有专用目标的集成电路,而ASIC是指应特定用户...
ASIC和SOC有啥区别?
ASIC(ApplicationSpecificIntegratedCircuit)是专用集成电路,是一种为专门目的而设计的集成电路,比如专用的音频、视频处理器。其特点是面向特定用户的需求...