详解AI芯片参数,英伟达凭啥不能被替代?
图片来源@视觉中国
文 | 产业象限,作者 | 山茶,编辑 | 钱江
2月22日,英伟达发布2024财年四季报,营收221亿美元,同比增长265%,净利润123亿美元,同比激增769%,双双大超市场预期。
然后,英伟达就杀疯了。
一夜之间,英伟达市值暴涨2770亿美元,创下华尔街单日最大涨幅的历史记录。如今,英伟达的市值已经逼近2万亿美元。以国内生产总值计算,英伟达市值超过了大多数其他国家经济体的规模。
图源:福布斯
从企业层面看,这一市值也超越Meta,成为仅次于微软、苹果和沙特阿美的全球第四大市值的巨无霸。
但有意思的现象是,虽然已经跻身第一梯队,但无论是营收还是利润,英伟达都与微软、苹果、甚至被它超过的Meta差距较远。可以对比来看:
《巴伦周刊》使用基于FactSet预测的2023年至2026年预期平均盈利增长,以及基于2024年预测的市盈率,对美股7大巨头企业的PEG比率(市盈率除以盈利增长率)也做了预测,英伟达是其中最低的。
图源:FactSet
毫无疑问,如今英伟达的市值存在巨大泡沫,但从国内到国外,投资者却都愿意为这样的泡沫买单。
整个市场对英伟达充满信心,因为在某种程度上,市场已经将英伟达与AI时代的未来划上了等号。
投资英伟达,就是投资属于未来的AI时代,在这样的逻辑下,英伟达似乎值得任何市值。
那么,英伟达真的不可替代吗?谁又会成为英伟达的对手,谁又能将它赶下神坛?
英伟达,凭什么遥遥领先?
和其它半导体企业相比,英伟达是“遥遥领先”的,起码在市值上如此。
如今,在全球前十的半导体企业中,不算台积电和阿斯麦这样的纯代工厂和光刻机厂商,英伟达的市值约等于剩下七家市值的总和,甚至还有富余。
图源:芯东西
撑起英伟达市值的,是其全球领先的AI计算芯片,包括A100、H100和即将上市的H200。根据富国银行的统计,英伟达目前在全球数据中心AI加速市场拥有98%的份额,处于绝对的统治地位。
很多时候,这些芯片花钱也都很难买到。早在2023年8月的时候,就有媒体报道,英伟达的订单排到了2024年。其芯片的交付周期,也曾一度高达8~11个月(如今已经缩短为3~4个月)。马斯克曾为此吐槽,“英伟达的芯片比毒品还难搞到”。
产能不足,供不应求,这些需求应该自然溢出到其他厂商。从供应链安全的角度考虑,面对如此集中的市场,企业似乎也不应该只选择英伟达这一家的产品。
但全球的企业排着队将订单送到英伟达手中,难道,除了英伟达的芯片之外,AMD、英特尔这些企业的芯片都办法训练大模型吗?
答案当然不是,但使用英伟达的芯片,目前仍然是训练和运行大模型的最优选择。这种优势体现在四个方面,包括硬件性能、软件生态、适用范围和整体性价比。
首先是硬件性能。
以英伟达在2020年5月发布的NVIDIA A100 GPU为例,这款芯片采用7nm制程和NVIDIA Ampere架构,拥有540亿个晶体管和6912个CUDA核心,最高可以提供80GB的GPU显存,以及2TB/s的全球超快显存带宽。在大模型训练和推理常用的FP16(半精度浮点运算)Tensor Core峰值性能可以达到312TF,使用稀疏计算的情况下,可以达到624TF。
图源:CSDN,NVIDIA GPU A100 Ampere(安培)架构深度解析
很多人对这些指标没什么概念,我们来简单解释一下。
芯片的制程决定着同样大小的芯片能够放下的晶体管的数量,而晶体管的数量越多,芯片的计算能力越强,这也是5纳米的芯片一定比7纳米的芯片先进的原因。
至于CUDA核心,即CUDA线程,是英伟达CUDA平台编程模型中的基本执行单元。我们都知道,GPU最强的能力是并行计算,而CUDA核心越多,意味着芯片能同时并行计算的数量也就越多,芯片的性能更强,完成同样任务的速度更快。
需要注意的是,芯片的计算能力强和计算效率高是两个概念。制程和晶体管的数量代表着计算能力,而CUDA核心的数量,代表着计算效率。
至于显存和带宽,则决定了GPU在运行时的效率。其中显存决定GPU同时能够存储的最大数据,而显存带宽,则决定显存和显卡之间的数据传输速度。
举一个简单直白的例子,在一个流水线上,原材料需要从库房运送到车间进行装备,然后将成品再运回库房。显存决定了库房能够放多少原材料,而显存带宽,则决定每次从库房送原材料的速度。如果库房不够大,或者材料传输速度不够快,那车间的生产能力再强,也无法生产出成品。所以显存和带宽,其实决定芯片能够参与训练多大参数规模的大模型,以及训练大模型的速度。
明白了这些基本概念,我们再用最有代表性的两家企业,进行对比。
首先是AMD,目前主打的芯片是MI250X,发布于2021年年底,采用7nm工艺,拥有582亿个晶体管,显存128G,显存带宽3.2768 TB/s,FP16峰值性能为369 TF,只有60个计算单元。
图源:AMD官网,MI250X
其次是英特尔,目前主打芯片Ponte Vecchio,同样发布于2021年,采用7nm工艺,宣称晶体管数量达到1020亿,是全世界晶体管数量最多的芯片。这款芯片显存128GB,显存带宽3.2TB/s,FP16峰值性能184TF,计算单元102个。
图源:英特尔 Hot Chips 演示的幻灯片,展示了 PVC 上的小芯片
我们会发现,即使从单纯的数据上看,英特尔和AMD也没有完全被英伟达甩开,甚至在某些领域,这两家的芯片还领先英伟达的A100。
但是这里有两个误区,第一个误区是,英特尔和AMD这两款芯片的发布时间比A100都要晚一年,他们真正对标的对手,其实应该是英伟达在2022年初发布的H100,而现在英伟达的芯片已经更新到H200了。
图源:Semianalysis
第二个误区在于,硬件指标并不完全等于芯片的整体能力,软件生态是决定芯片性能和使用的第二个关键指标。
这就像手机和操作系统一样,手机的硬件配置再好,没有一个好的操作系统,对于消费者来说仍然不是一款好的手机。而这里需要提到的,就包括英伟达的CUDA平台、NVLink和Tensor Core等软件生态。
比如CUDA平台,我们前面提到的CUDA核心就是这个平台的产物,它可以提高芯片的并行计算能力;它可以通过编程,提高GPU的能效比,让同样的工作耗费更少的能源。
此外,CUDA平台还支持广泛的应用程序,包括科学计算、深度学习、机器学习、图像处理、视频处理等等,它还允许技术人员通过C++等常用的编程语言来编写GPU代码。打一个不恰当的比方,这相当于中国人不用学习英文,直接使用中文指挥外国人做事情,帮助技术人员节省了巨大成本。
但目前市面上大多数程序员已经深度依赖CUDA平台和开发工具,就像我们使用微信许多年了,你的朋友、聊天记录、朋友圈都在这个微信上,即使现在出现一个更好用的社交软件,你也很难迁移。
CUDA带来的生态壁垒也类似这个道理,其他平台虽然也有自己的软件生态,比如AMD有自己的GCN 架构,英特尔有Xe架构,甚至为开发者提供类似“一键换机”迁移功能,但都很难与英伟达竞争。
当然,这里面也有一些曲线救国的做法,比如以AMD为首,越来越多的芯片企业采用了“打不过就加入”的策略,选择将自己的芯片兼容到CUDA平台,早在2012年的时候,AMD就与Nvidia 达成了一项协议,允许AMD在其GCN架构GPU中使用 CUDA 技术,所以现在我们在AMD的芯片中,也会看到CUDA核心。
当然,对于英伟达来说,CUDA也只是护城河的一部分,其他的技术如NVLink也至关重要。
作为大模型训练的GPU,没有哪家企业会单独使用一张GPU,每次都会使用至少几百张卡,甚至上万张卡一起建立计算集群。NVLink是一种链接技术,可以实现GPU之间的高速、低延迟的互联。如果没有这种技术,整个芯片算力的集群就无法实现1+1>3的效果,而且会增加GPU之间的通信延迟,执行任务的效率会降低,芯片的功耗会增加,最终增加整个系统的运行成本。
大模型训练实际上是一个非常消耗能源的事情,国盛证券做过一个计算,假设每天约有1300万独立访客使用ChatGPT,那每天的电费就需要5万美元。而如果没有NVLink,这笔成本还会指数级上升。
芯片某种程度上就像购车一样,购车只是第一次成本,之后的油费、保养、保险才是成本的大头。所以黄仁勋才说,“AI系统最重要的不是硬件组成的成本,而是训练和运用AI的费用。”
所以,虽然AMD、英特尔在某些芯片上把价格定得比英伟达更低,但是从长期成本来考虑,具有更优软件生态和协同、配套工具的英伟达芯片仍然是性价比最高的选择。
当然,这里面还要考虑到使用场景的问题。
比如英伟达的大客户,主要是以Meta、微软、亚马逊、Google为代表的云计算平台。有媒体报道,头部云计算厂商在英伟达H100 GPU整体市场份额中的占比达到50%。
图源:Omida Research
而云厂商采购芯片的逻辑,主要是构建算力集群,然后通过云服务平台将这些算力再卖出去。但这里就会存在一个问题,就是云厂商并不知道客户会拿这些算力来做些什么,比如有的企业会用来做机器学习,有企业需要大模型训练,也有企业需要做大模型推理。
不同的需求,背后对应的算力配置也不尽相同,它需要底层的芯片能够支持多种编程模型,支持多种数据类型,有较好的可拓展性和良好的性能和功耗等等。而这些,恰恰是英伟达硬件能力加软件生态带来的优势。
综合来看,无论是从硬件性能,还是软件生态;无论是从开发工具和部署工具,到长期使用的成本和可开发应用场景。对比同类竞争对手,英伟达都属于最有性价比,且遥遥领先的存在。
这就是为什么明明需要排着长队、忍受长时间等待,大家却仍然执着于英伟达芯片的原因。
谁想替代英伟达?
难道英伟达真的不能被超越吗?当然也不是,在巨大的市场利益面前,从传统半导体巨头到初创企业,围剿英伟达的呼声从来就没有停止过。
特别是最近几年,随着云计算和云端AI芯片的火爆,已经有无数的半导体公司说过,自家芯片已经在部分性能上超过了英伟达A100,就像今天也有无数大模型企业会说自己已经在某些方面超过OpenAI GPT-3.5一样。
在最新披露年报中,英伟达是这样描述自己的竞争风险的。
公司的竞争来源主要有两个,一个是 GPU、CPU、DPU、嵌入式SoC和其他加速AI计算处理器产品的公司,比如英特尔、AMD、高通、华为;另一个是提供基于InfiniBand(无线带宽技术)、以太网、光纤通道和专有技术的半导体高性能互连产品供应商,比如华为、思科、惠普这样的通信公司,以及亚马逊、微软、阿里、谷歌、华为这样的云服务公司等等。
特别是第一次被英伟达列为对手且被反复提到的华为。从芯片硬件到软件,从云服务到通信解决方案,英伟达几乎将华为当做所有领域的竞争对手。
奇怪的是,虽然在2023年8月,科大讯飞创始人刘庆峰就提到华为的GPU已经可以对标A100了,但其实从客观的性能、使用成本,软硬件生态工具,华为与英伟达之间仍然有着代际的差距。
华为被如此重视,关键在于两点:
一是市场环境的问题,由于众所周知的原因,英伟达的高端芯片在国内的销路并不畅通,在全面国产替代的背景下,其针对中国的特供版芯片在中国的竞争力也在降低。在这样的背景下,华为拥有更多的成长空间,不必直接对标英伟达最先进的H200。
另一个关键是华为的生态能力非常齐全,作为通信起家的企业,华为不仅拥有自己的芯片,服务器,还拥有自己的云计算平台和大模型。基本上,华为覆盖了AI这条产业链从头到尾的所有环节,对比英伟达拥有更大的潜力和可能。
如今,华为的昇腾910B正在疯狂席卷中国市场,除了科大讯飞之外,国内多地的智算中心也都已经用上了华为的芯片。《财经》之前报道,华为昇腾系列产品目前处在供不应求状态,价格约只有英伟达A100的60%甚至可以更低。
为了应对国内市场的变化,英伟达也在积极推出新的产品。2月初,有媒体报道,英伟达的新款国内专供芯片H20已经开始在接受经销商的预定。
图源:NVIDIA 由H2O.ai和NVIDIA提供支持的融合AI生态系统
而有趣的是,作为新产品,英伟达H20每张的定价换算成人民币仅在8.6万~11万左右,刚好略低于华为昇腾910B 12万元左右的价格。在英伟达承受中国市场压力的背景下,这被看做是一种防守策略。
除了在国内有被黄仁勋亲自认证的竞争对手华为之外,海外市场英伟达其实也是群狼环伺。
最虎视眈眈的自然是AMD。
2023年6月,AMD发布了Instinct MI300,目标是对标英伟达H100,其晶体管数量达到1530亿,内存192GB、内存带宽5.3TB/s,分别是英伟达H100的大约2倍、2.4倍和1.6倍。
软件上,AMD仍然延续兼容CUDA的策略,一方面通过迁移工具,翻译CUDA应用的策略吸引英伟达的开发者,另一方面开源自家的ROCm软件,提高企业和开发者的自主权。
对于芯片算力这么基础的部分,没有企业希望英伟达成为自己的唯一供应商,所以在MI300推出之后,包括OpenAI、微软、Meta都纷纷表态将采购MI300。
除了AMD,即使是已经在AI上落后的英特尔,也不甘心错过这场泼天富贵。
英特尔最新的AI芯片Gaudi3将在2024年上市,这款芯片采用5nm工艺,最高配备128GB的内存。按英特尔的宣传,这款芯片的带宽是Gaudi 2(7nm工艺)的1.5倍,BF16功率是其4倍,网络算力是其2倍,并表示Gaudi3的性能将优于英伟达的H100。同时,美国政府也在对英特尔进行扶持,预计将向英特尔提供超过100亿美元的补贴。
从战略上,与英伟达的优势在云端不同,英特尔的优势在与其广阔个人终端市场。所以英特尔其实将更大的赌注压在了个人终端的AI化上。英特尔CEO基辛格多次提到,要重构PC体验,并表达对未来AI PC市场的看好。英特尔希望依靠其CPU在个人PC上的优势,率先抢占这一市场,然后再通过消费市场反向促进云端市场的繁荣,打一波农村包围城市的战役。
事实上,芯片的行业特点与软件、或者互联网的商业可以通过建立用户规模,或者生态就建立壁垒实现赢者通吃不同。作为高度技术密集型产业,芯片技术的代际变化非常大,只要存在技术迭代的机会,后来者就永远有弯道超车的可能。
芯片不同于软件,或者互联网等其他业务模式,建立起一定的用户规模之后可以一直赢者通吃。只要存在技术迭代的机会,后来者就永远有弯道超车的可能。
而无论是AMD还是英特尔,亦或者华为,他们都有深厚的技术研发能力和充裕的资金,这些企业可能会在这个阶段暂时落后,但也谁无法笃定,这些企业不会出现一次技术涌现,或者抓住某个技术迭代的关键时期后来居上。
从最新财报看,AMD 2023年Q4数据中心的销售额22.8亿美元,同比增长38%,表明市场已经在逐步接纳其AI芯片的使用。
而除了AMD和英特尔这样的老牌玩家之外,这个市场上还有很多创业者在前赴后继。
最近比较出名的如Groq,其针对大语言模型量身定制的LPU芯片每秒可以生成500个token,远超英伟达芯片的效率。当然,这个成绩仍然是在实验场景下的结果,最终工程化交付还有很长的距离,且这款芯片也还有许多技术问题有待解决。
但这本质上代表,面对新的场景,如今的芯片的技术仍有创新空间。
所以我们会看到,作为全球最具代表的AI企业,OpenAI也宣布了自己的造芯计划。其创始人CEO Altman前段时间不仅传出7万亿美元的募资芯片,在这之前更是已经投资了包括Cerebras、Rain Neuromorphics和Atomic Semi在内的至少三家芯片公司。
远在日本的孙正义,在互联网时代已经功成名就的他也打算放过这次机会,刚刚从巨额的投资亏损中解套的他,立马就提出了募集1000亿美元以创立一家人工智能半导体芯片企业的计划。
有媒体报道,在这次计划中,软银将出资300亿美元资金,另有700亿美元的资金可能来自中东地区的机构。而在2023年,软银集团曾以640亿美元的估值收购ARM公司25%股份,这也是孙正义投入芯片的底气之一。当然,对于英伟达来说,更大或者更直接的危险还是来自其最大的客户——云厂商。
面对巨大的算力需求,国内如百度、华为、阿里都相继推出了自己的AI芯片,在国外,包括微软、亚马逊、Google也同样在开发自己芯片。
当然,这些芯片主要针对的是特定场景的计算需求,与英伟达面向通用场景的GPT仍然有不同。但这也代表,云计算厂商正在逐步减少对英伟达的依赖。而正如前面所提到的,这部分企业才是真正支撑英伟达业绩的主要客户。
面对这些既定的,或者潜在的市场变化,英伟达自然也没闲着。据路透社报道,英伟达近期已与微软等主要云厂商联系,商讨为云厂商定制AI芯片的问题。
同时,英伟达也在持续推出新的芯片,以期望不断拉开与后来者的距离。目前,英伟达已经公布了其下一代AI芯片B100的消息,设计性能要比H100快3倍。
所以,虽然超越英伟达的机会仍然存在,这个世界也从不缺少挑战“霸权”的勇士,但这个任务显然还很漫长。
手机芯片内部各个参数,你知道多少?如何分辨手机芯片性能优良?
为了能够观察出来手机芯片的性能到底如何,这里使用骁龙710和骁龙660两款芯片进行对比,直观的观察出手机芯片各个方面工艺的进化。
骁龙710和骁龙660参数对比图
跑分上两者相差3w分,710跑分更高,但是跑分不能体现出来两者到底有多大的差异。
制作工艺
两者采用的都是LPP工艺,和LPE相比,功耗和封装面积,性能更加出色。710采用更先进的 10nm 制程。体积比660更小的情况下,功耗和性能同样的提升了。
性能和功率的关系图
从图中可以看到两种工艺的差别,在同一功率下,10nm的性能比14nm的性能提升了差不多20%。不仅仅如此,手机内部其实零部件都是很紧凑的,如果处理器的体积减小,多一寸的地方,手机就可以多放下一个零件,对于整部手机来看,可能会有质的飞跃。
现在手机芯片制作工艺更近一步,骁龙最新芯片855采用了体积更小的7nm制造工艺,我国国内华为自主研发的麒麟980芯片也完成了7nm的制造工艺。
工艺的体积的减少,cpu的晶体管得到了增加,华为自主研发的麒麟980(7nm工艺)为69亿个晶体管,麒麟970(10nm工艺)为55亿个晶体管,提升了25.5%左右。从跑分上来看,cpu方面,麒麟980比970性能高出了50%,GPU更是高出了一倍。
CPU架构
710:双核Kryo 360 Gold+六核Kryo 360 Silver | 660:四核Kryo 260+四核Kryo 260
架构是处理器的基础,对于处理器的整体性能起到了决定性的作用,不同架构的处理器同主频下,性能差距可以达到2-5倍。
710采用的2大核+6小核的架构,660则是4大核+4小核的架构,平时工作学习性能消耗少的时候,使用的是小核工作。遇到大型任务操作的时候,8核全开。大核讲究的是性能,而小核比较省电。
我比较同意旗舰处理器采用4+4的架构,虽然 660架构更合理,但是660采用的是全都是Kryo 260。而710采用的是 360 Gold大核+Kryo 360 Silver小核,品质就不同,即使个人认为4+4的架构更好,奈何核品质不同。但是710,2+6的架构,注定只能是中端产品。
核心频率
710:2.2+1.7GHz | 660:2.2+1.8GHz
频率一般越高,手机处理的速度越快。从这点来看,貌似660的整体频率更高。
CPU频率高真的性能就强吗?答案是不一定的,CPU的性能还和CPU的工作频率、Cache容量、指令系统和逻辑结构等参数有重要的关系,所以单一的看CPU的主频是不完全正确的!
之前说过10nm的性能比14nm的性能更优秀,所以同一功率下,10nm性能更佳。
因为710的小核更多有6个,频率更低,1.7GHz,所以710的功耗才会更省。
GPU
GPU英文全称Graphic Processing Unit,中文翻译为“图形处理器”。我们通常就叫它显卡,GPU是显示卡的“大脑”,它决定了该显卡的档次和大部分性能
GPU作为图片处理的核心,主要组成部分如下:
(1)显示主芯片显卡的核心,俗称GPU,它的主要任务是对系统输人的视频信息进行构建和渲染。
(2)显示缓冲存储器用来存储将要显示的图形信息以及保存图形运算的中间数据;显示缓存的大小和速度直接影响着主芯片性能的发挥。
(3)RAMD/A转换器把二进制的数字转换成为和显示器相适应的模拟信号。
内存
710:LPDDR4X-1866 | 660:LPDDR4-1866
同一转速,一个是ddr4x,一个是ddr4X,两者其实性能差不多,唯一不一样的就是ddr4x的功耗低于ddr4。从这点看,也能够知道,为什么710的功耗更低了。
1866代表的则是这款芯片内存的转速,一般来说,转速越快,处理指令速度越快,手机操作更加的流畅。
基带
710:X15 LTE Cat.15/13 | 660:X12 LTE Cat.12/13
基带的功能决定了我们的通讯方式,使用2G、3G或者4G网络;完成无线网络信号的解调、解码工作,并将解码后的数字信号传输至上层系统处理;上层系统下发的数字信号指令,由基带进行调制,并通过无线网络信号进行传输。
手机基带决定了我们手机信号。一般基带参数后面会跟着Cat.12/13。前者代表的是下载速度,“/”后面代表的参数是上传速度。
710下行支持 Cat.15,即下载最高速度750Mbps-800Mbps,上行速度Cat 13,支持上传最高速度150Mbps
660下行达到Cat 12,表示支持下载最高速度600Mbps,上行Cat 13,支持上传最高速度150Mbps
同样的上传速度,710最大下载速度更快,在能够支持最大速度的情况下,710信号更加稳定。
以下共享出各个CAT标准的上传和下载速度表,以供参考。
如何区分手机性能,为什么骁龙一些8代的处理器没有7代的性能好?
主要和产品时间线有关
骁龙8代处理器一般采用的都是高端机,7代处理器采用的是终端机,6代则是低端机。
最开始的时候,骁龙6、7、8三代处理器,因为手机市场智能机普遍都还没有发展起来,技术革新并没有那么快,所以早期的骁龙高中低三代处理器在现在来看,工艺很普通。
随着手机工艺的进步,骁龙应对高中低端手机市场的芯片一定会有提升。时间的流逝,导致一些7代的处理器工艺超过了旧版本8代处理器。
例如,骁龙808处理器的出货时间是2014年的第三个季度,而骁龙710是2018年的第二个季度。骁龙710产生的时间比808晚了近4年。710处理器的工艺自然也就随时间而提升并超过4年前的骁龙808的处理器。
总而言之,手机硬件的制造工艺越来越精进,让我们对数码产品的体验越来越优质。在我们感受便捷的同时,也能明白其中工艺的厉害之处,让自己也能做到知其然知其所以然。
感谢阅读
相关问答
芯片的pin参数?
芯片pin参数:1.插入损耗:开关在导通时衰减不为零,称为插入损耗2.隔离度:开关在断开时其衰减也非无穷大,称为隔离度3.开关时间:由于电荷的存储效应,...
4410芯片参数?
4410芯片的参数FHP4410场效应管参数:封装:TO-2203.参数:耐压100V,电流160A内阻6mΩV,4410芯片的参数FHP4410场效应管参数:封装:TO-2203.参...
flash芯片参数含义?
FLASH是闪存芯片的意思,1M/2M/4M是他的容量。ROM只读存储器RAM随机存储器CDROM光驱SDRAM过去的一种内存类型,2000年前后的主流。flash芯片是低功耗低.....
80028芯片参数?
80028功放芯片参数值有用途单声道功放,采样电路电压值1.15v~1.65v。mp3模块电路采用kt403a语音芯片、tf卡座和80028芯片,其中kt403a语音芯片为主芯片,...8.....
手机怎么看芯片配置?
有两种方法,一种是手机设置里面,打开我的手机,就可以看到芯片型号,另一种是借助第三方软件如安兔兔直接查看芯片型号。1.打开自己手机的设置App。2.在设置A...
4688芯片参数?
标配CPU数目 1个最大CPU数目 2个主板主板芯片组 IntelC602Chipset内存内存类型 DDR3REGECC/三通道标配内存 8G内存插槽数 6最大内存容量 19...
存储芯片参数?
24LC256-I/SN是一种存储芯片,存储容量是256Kbit,最大时钟频率:是0.4MHz,电源电压(最大值)是5.5V,(最小值)是2.5V。品牌:MICROCHIP封装:N/A批...
ip芯片参数?
参数如下ip芯片提供I2C扩展,.支持NTC,自带DCP手机识别功能,.具有放电温度环路技术。.提供较大3A电流,充电效率较高至97%。内置IC温度和输入电压智能调节充电...
2325芯片参数?
IP2325的升压开关充电转换器工作频率500KHz;5V输入,8V/1.2A输出转换效率93%;IP2325具有输入限压功能,可以智能调节充电电流,自适应适配器负载能力。...
vp32芯片参数?
vp32是一款宽电压输出,DC-DC转换芯片,性能稳定,运转十分可靠,其芯片参数是输入电压范围是5V至32V,输出电压范围是5V至42V可调,内部MOSFET输出开关电流可高...