技术资料
HOME
技术资料
正文内容
芯片制造工艺 科普:制造芯片要经过这些步骤
发布时间 : 2024-10-07
作者 : 小编
访问数量 : 23
扫码分享至微信

科普:制造芯片要经过这些步骤

来源:内容来自「富士通电子」,谢谢。

在半导体的生产工厂,在晶元上通过极其细微的加工进行制造。在一枚晶片上一共要制造出成千上厞个这样的吸几毫米大小的半导体器件(芯片)。这道制造工序叫做晶元工艺,这道工艺的流程则被称为Process Flow(工艺流程)。今天咱们就简要介绍下半导体IC的Process Flow。

FEOL (Front End of Line:基板工序、半导体晶元制造工序的前半部分)在硅基板上制造出晶体管等部件。

BEOL (Back End of Line:布线工序、半导体晶元制造工序的后半部分)将在FEOL制造的各部件与金属材料连接布线,以形成电路。

元件隔离

晶体管是在硅晶片的表面附近形成晶。

为保证每个晶体管的独立运行,需要阻止与之相邻的晶体管的干扰。因此,晶体管的形成区域是相互隔离的。

井道形成

在一个芯片中,分别制作出n型MOS晶体管与p型MOS晶体管。

在各自的晶体管制作区域,以适当的浓度的注入各个晶体管所需的杂质(n型MOS:p井,n沟道;p型MOS: n井,p沟道)。另外,可通过追加掺入不同的杂质及不同浓度的剂量來分别制作不同电压/特征的晶体管。

栅极氧化及闸形成

这是决定晶体管性能的最重要的工序。

因为栅极氧化影响晶体管的性能及可靠性极大,所以需要在晶片表面形成分布均匀的高密度薄膜。

由于闸形成的尺寸也会对晶体管的性能产生重要影响,因此有必要对光刻胶形成以及栅极蚀刻进行严格的尺寸管理。并且,利用CVD法来沉积多晶硅可形成栅电极。

LDD形成

LDD(Lightly Doped Drain,轻掺杂漏)的形成是为了避免晶体管微型化带来的不利影响(操作速度变慢等)。LDD也被称为扩展。

n型LDD: 在n型MOS的区域内加入n型杂质(如磷,砷等)。

p型LDD: 在p型MOS的区域内加入p型杂质(如硼等)。

侧壁间隔

为形成上述的LDD及,栅极、源极、漏极的硅化(下述),需要仅在栅极的水平方面(两端)的壁部形成氧化膜。

侧壁氧化膜: 在整个晶片表面形成氧化膜。

侧壁蚀刻: 在氧化膜上实施异向性(垂直方向)的蚀刻,使得氧化膜仅残留在栅极的侧壁。

源极与漏极

n型MOS与p型MOS领域内会各自形成源极和漏极。通常情况下,晶体管左右对称,所以形状也相同。电源的连接方向决定哪一端是源极或漏极。

p型源极与漏极: p型MOS区域内掺入p型杂质(如硼等)。

n型源极与漏极: n型MOS区域内掺入n型杂质(如磷,砷等)。

硅化物

对MOS的三个电极即栅极(多晶硅)、源极、漏极(硅)进行硅化(与金属的化合物)后,可以降低对金属布线层的电阻。同时,也可以降低各自电极滋生的电阻。

硅化: 通过化学蚀刻(自对准硅化),选择性地仅去除钴薄膜。

介质膜

接下来是连接晶体管等元件的布线流程。

介质膜沉积: 通过CVD法形成厚的硅氧化膜等。

介质膜抛光: 为使晶体表面凹凸不平的部分变得平坦,对介质膜进行抛光。

接触孔

为了将晶体管的三个电极即栅极、源极、漏极透過介质膜之上的金属层相互连接,要对介质膜进行开孔(接触孔)并填充W(钨)。

插件钨填充: 於接触孔内填充钨。

插件钨抛光: 对表面进行抛光,去除多余的钨,使得钨仅留在接触孔的内部。

金属-1

形成介质膜,挖沟槽,於沟槽填充Cu(铜)。仅向沟槽内填充Cu(铜)的方式也被称为单镶嵌(single damascene)。

金属-1 Cu(铜)填充: 通过电镀的方式向沟槽填充Cu(铜)。

金属-1 Cu(铜)抛光: 对表面进行抛光以去除Cu膜(铜膜),使得Cu(铜)仅留在沟槽内部。

金属-2

形成介质膜,挖孔及沟槽,於孔和沟槽填充Cu(铜)。通过同时向孔及沟槽填充Cu(铜)的方式被称作双镶嵌(dual damascene)。

金属-2 Cu(铜)填充: 通过电镀的方式向孔及沟槽填充Cu(铜)。

金属-2 Cu(铜)抛光: 对表面进行抛光以去除Cu膜(铜膜),使得Cu(铜)仅留在孔及沟槽内部。

*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。

今天是《半导体行业观察》为您分享的第2026期内容,欢迎关注。

半导体行业观察

半导体第一垂直媒体

实时 专业 原创 深度

华为|台积电|江北新区|AI|晶圆|RISC-V|AMD|MEMS

回复 投稿 ,看《如何成为“半导体行业观察”的一员 》

回复 搜索 ,还能轻松找到其他你感兴趣的文章!

芯片制造的6个关键步骤

来源:内容来自ASML阿斯麦光刻,谢谢。

在智能手机等众多数码产品的更新迭代中,科技的改变悄然发生。苹果A15仿生芯片等尖端芯片正使得更多革新技术成为可能。这些芯片是如何被制造出来的,其中又有哪些关键步骤呢?智能手机、个人电脑、游戏机这类现代数码产品的强大性能已无需赘言,而这些强大的性能大多源自于那些非常小却又足够复杂的科技产物——芯片。世界已被芯片所包围:2020年,全世界共生产了超过一万亿芯片,这相当于地球上每人拥有并使用130颗芯片。然而即使如此,近期的芯片短缺依然表现出,这个数字还未达到上限。尽管芯片已经可以被如此大规模地生产出来,生产芯片却并非易事。制造芯片的过程十分复杂,今天我们将会介绍六个最为关键的步骤:沉积、光刻胶涂覆、光刻、刻蚀、离子注入和封装。

沉积

沉积步骤从晶圆开始,晶圆是从99.99%的纯硅圆柱体(也叫“硅锭”)上切下来的,并被打磨得极为光滑,然后再根据结构需求将导体、绝缘体或半导体材料薄膜沉积到晶圆上,以便能在上面印制第一层。这一重要步骤通常被称为 "沉积"。随着芯片变得越来越小,在晶圆上印制图案变得更加复杂。沉积、刻蚀和光刻技术的进步是让芯片不断变小,从而推动摩尔定律不断延续的关键。这包括使用新的材料让沉积过程变得更为精准的创新技术。

光刻胶涂覆

晶圆随后会被涂覆光敏材料“光刻胶”(也叫“光阻”)。光刻胶也分为两种——“正性光刻胶”和“负性光刻胶”。正性和负性光刻胶的主要区别在于材料的化学结构和光刻胶对光的反应方式。对于正性光刻胶,暴露在紫外线下的区域会改变结构,变得更容易溶解从而为刻蚀和沉积做好准备。负性光刻胶则正好相反,受光照射的区域会聚合,这会使其变得更难溶解。正性光刻胶在半导体制造中使用得最多,因其可以达到更高的分辨率,从而让它成为光刻阶段更好的选择。现在世界上有不少公司生产用于半导体制造的光刻胶。

光刻

光刻在芯片制造过程中至关重要,因为它决定了芯片上的晶体管可以做到多小。在这个阶段,晶圆会被放入光刻机中(没错,就是ASML生产的产品),被暴露在深紫外光(DUV)下。很多时候他们的精细程度比沙粒还要小几千倍。光线会通过“掩模版”投射到晶圆上,光刻机的光学系统(DUV系统的透镜)将掩模版上设计好的电路图案缩小并聚焦到晶圆上的光刻胶。如之前介绍的那样,当光线照射到光刻胶上时,会产生化学变化,将掩模版上的图案印制到光刻胶涂层上。使曝光的图案完全正确是一项棘手的任务,粒子干扰、折射和其他物理或化学缺陷都有可能在这一过程中发生。这就是为什么有时候我们需要通过特地修正掩模版上的图案来优化最终的曝光图案,让印制出来的图案成为我们所需要的样子。我们的系统通过“计算光刻”将算法模型与光刻机、测试晶圆的数据相结合,从而生成一个和最终曝光图案完全不同的掩模版设计,但这正是我们想要达到的,因为只有这样才能得到所需要的曝光图案。

刻蚀

下一步是去除退化的光刻胶,以显示出预期的图案。在"刻蚀"过程中,晶圆被烘烤和显影,一些光刻胶被洗掉,从而显示出一个开放通道的3D图案。刻蚀工艺必须在不影响芯片结构的整体完整性和稳定性的情况下,精准且一致地形成导电特征。先进的刻蚀技术使芯片制造商能够使用双倍、四倍和基于间隔的图案来创造出现代芯片设计的微小尺寸。和光刻胶一样,刻蚀也分为“干式”和“湿式”两种。干式刻蚀使用气体来确定晶圆上的暴露图案。湿式刻蚀通过化学方法来清洗晶圆。一个芯片有几十层,因此必须仔细控制刻蚀,以免损坏多层芯片结构的底层。如果蚀刻的目的是在结构中创建一个空腔,那就需要确保空腔的深度完全正确。一些高达175层的芯片设计,如3D NAND,刻蚀步骤就显得格外重要和困难。

离子注入

一旦图案被刻蚀在晶圆上,晶圆会受到正离子或负离子的轰击,以调整部分图案的导电特性。作为晶圆的材料,原料硅不是完美的绝缘体,也不是完美的导体。硅的导电性能介于两者之间。将带电离子引导到硅晶体中,让电的流动可以被控制,从而创造出芯片基本构件的电子开关——晶体管,这就是 "离子化",也被称为 "离子注入"。在该层被离子化后,剩余的用于保护不被刻蚀区域的光刻胶将被移除。

封装

在一块晶圆上制造出芯片需要经过上千道工序,从设计到生产需要三个多月的时间。为了把芯片从晶圆上取出来,要用金刚石锯将其切成单个芯片。这些被称为“裸晶”的芯片是从12英寸的晶圆上分割出来的,12英寸晶圆是半导体制造中最常用的尺寸,由于芯片的尺寸各不相同,有的晶圆可以包含数千个芯片,而有的只包含几十个。这些裸晶随后会被放置在“基板”上——这种基板使用金属箔将裸晶的输入和输出信号引导到系统的其他部分。然后我们会为它盖上具有“均热片”的盖子,均热片是一种小的扁平状金属保护容器,里面装有冷却液,确保芯片可以在运行中保持冷却。

一切才刚刚开始

现在,芯片已经成为你的智能手机、电视、平板电脑以及其他电子产品的一部分了。它可能只有拇指大小,但一个芯片可以包含数十亿个晶体管。例如,苹果的A15仿生芯片包含了150亿个晶体管,每秒可执行15.8万亿次操作。当然,半导体制造涉及到的步骤远不止这些,芯片还要经过量测检验、电镀、测试等更多环节,每块芯片在成为电子设备的一部分之前都要经过数百次这样的过程。

*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。

今天是《半导体行业观察》为您分享的第2984内容,欢迎关注。

晶圆|集成电路|设备|汽车芯片|存储|台积电|AI|封装

相关问答

芯片制造六大工艺?

1,芯片的原料晶圆,晶圆的成分是硅,硅是由石英沙所精练出来的,晶圆便是硅元素加以纯化(99.999%),接着是将些纯硅制成硅晶棒,成为制造集成电路的石英半导体...1...

芯片制造八大工艺流程?

包括:晶圆清洗、光刻、蚀刻、扩散、离子注入、化学机械抛光、金属化和封装。这八大工艺流程分别是芯片制造中不可或缺的环节,其中晶圆清洗是为了保证前面的工...

dram存储芯片工艺流程?

DRAM存储芯片工艺流程通常包括晶圆制备、晶圆清洗、光刻、沉积薄膜、刻蚀、离子注入、化学机械抛光、热处理、测试等步骤。首先,通过晶圆制备得到单晶硅片;然...

芯片制造真的很难吗?

首先先直接回答你的问题,芯片制造很难,高精尖的设备,包括原材料大部分都依靠进口,不是某一个国家能单独搞定的,就算是荷兰的ALSM也是靠着大部分的进口完成的...

芯片制造工艺的极限是几nm?

1.?2.目前,芯片制造工艺的极限已经达到了7纳米(nm)左右。这意味着芯片上的晶体管尺寸已经缩小到了7纳米的尺寸。这样的极限尺寸是由于物理限制和技术挑战所...

不用光刻,用化学工艺制作芯片可行吗?

当前光刻只能达到纳米级,而化学反应能达到原子级。当前光刻只能达到纳米级,而化学反应能达到原子级。光是精准可控的,化学能不行的

pvd在芯片生产工艺中的作用?

calVaporDeposition)是物理气相沉积:指利用物理过程实现物质转移,将原子或分子由源转移到基材表面上的过程。它的作用是可以使某些有特殊性能(强度...它的...

与芯片有关的稀缺材料有哪些?

硅片是制作集成电路的重要材料,通过对硅片进行光刻、离子注入等手段,可以制成各种半导体器件。目前的硅片工艺面临着切割线直径、荷载、切割速度、维护性等挑...

i7i5i3制造上有什么区别?

将切割好的芯片进行封装,之后就可以售卖了i3、i5、i7处理器基本区别在哪6大家看完以上介绍,是不是还没看出头绪,i3、i5、i7处理器究竟区别在哪?实际上在...

做手机芯片的机器叫什么?

光刻机是芯片制造的关键设备,ASML市占率高达84%占据垄断地位,近期光刻机国产化进程加快。光刻机是一种投影曝光系统,光刻过程是将掩膜板上的图形曝光至预涂了...

 裙装  bt5 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2024  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部